Friday, September 22, 2017

ASCO Fluid Automation Applications in Power Plants

power plant for electrical generation
ASCO products have applications throughout the power
generation industry.
Here is a partial listing of power generation plant applications where ASCO products provide reliable solutions.

ASCO Solenoid Valves

Ideal for steam, air, or liquid flows. Throughout the power plant, our solenoid valves provide superior service in areas such as SO2 scrubbing, turbine lubrication systems, and igniter burner No. 2 fuel lines to name a few.

Numatics FRLs

Filters, regulators, and lubricators treat air quality and pressure in your plant’s pneumatic system. Apply them to control pressure or meet filtration requirements for your pneumatic equipment. These high-performance products are available in multiple configurations, including electronic regulators.

ASCO Angle-Body Piston Valves

Well suited to replace ball valves in air, water, and steam applications with pipe sizes 2 1/2" or smaller and up to 150 psi. This compact solution reduces cost of ownership, eliminates water ham- mer, and creates tight shutoff in both directions. Available with limit switches, AS-interface®, and DeviceNetTM protocols, Class I, Div. 2 HS Series position indicators, and low power solenoids.

ASCO Dust Collector Valves

ASCO integral or remote pilot valves are especially designed for dust collector applications, combining high flow, long life, and extremely fast opening and closing to produce reliable and economical operation. Valves with quick mount connections eliminate time consuming thread cutting and sealing.

ASCO Pressure Sensors

A range of high-quality sensors with long-life designs and ensured repeatability, these signal when process media reach pressure set points. They play a vital part throughout the entire power generation process.

ASCO Redundant Control System

The ASCO RCS is a redundant pilot valve system that acts as a single 3-way valve. Features include the ability to perform automatic online testing of the redundant solenoid valves, automatic partial stroke testing of the process valve, and online maintenance capabilities. Use this product in high reliability or critical applications. Certified per IEC 61508 Parts 1 and 2 and are SIL 3 capable.

ASCO Solenoid Pilot Valves

Designed to operate at high cycles or for long periods of dormancy, these 3 and 4-way models provide ensured action in demanding applications. Features include, manual operators, high flows, and explosion-proof options. Plus new 0.55 W models are perfect for networks with low power limitations. Brass and stainless steel versions available.

Numatics Cylinders

A large range of high quality Numatics cylinders that can withstand the harsh environment of power generation systems. Whether you are operating a scrubber, bag house, or damper controls, Numatics cylinders are used to open and close large orifices in these systems. Available in 17 bore sizes from 1 1/2" to 24".

Share your application challenges with a product specialist, combining your own process and facilities knowledge and experience with their product application expertise to develop an effective solution.



Thursday, September 14, 2017

Training Program for UPS Users



As part of their dedication to delivering power management equipment and systems that help maintain business operation, Ametek Solid State Controls provides a comprehensive training program for customers, to enable them to understand the operation of their equipment and derive the maximum value from its operation. This short video provides a synopsis of the training program and company philosophy that assure customers are empowered by their equipment, not burdened.

Share your power conditioning and backup power requirements with dedicated specialists, leveraging your own knowledge and experience with their product application expertise to develop effective solutions.

Wednesday, September 6, 2017

Wireless Transmitters In Process Measurement and Control

wireless industrial temperature transmitter
Industrial wireless temperature transmitter, one
of many variants available for process measurement
Image courtesy Yokogawa
In process control, various devices produce signals which represent flow, temperature, pressure, and other measurable elements of the process. In delivering the process value from the measurement point to the point of decision, also known as the controller, systems have traditionally relied on wires. More recently, industrial wireless networks have evolved, though point-to-point wireless systems are still available and in use. A common operating protocol today is known as WirelessHARTTM, which features the same hallmarks of control and diagnostics featured in wired systems without any accompanying cables.

Wireless devices and wired devices can co-exist on the same network. The installation costs of wireless networks are decidedly lower than wired networks due to the reduction in labor and materials for the wireless arrangement. Wireless networks are also more efficient than their wired peers in regards to auxiliary measurements, involving measurement of substances at several points. Adding robustness to wireless, self-organizing networks is easy, because when new wireless components are introduced to a network, they can link to the existing network without needing to be reconfigured manually. Gateways can accommodate a large number of devices, allowing a very elastic range for expansion.

In a coal fired plant, plant operators walk a tightrope in monitoring multiple elements of the process. They calibrate limestone feed rates in conjunction with desulfurization systems, using target values determined experientially. A difficult process environment results from elevated slurry temperature, and the associated pH sensors can only last for a limited time under such conditions. Thanks to the expandability of wireless transmitters, the incremental cost is reduced thanks to the flexibility of installing new measurement loops. In regards to maintenance, the status of wireless devices is consistently transmitted alongside the process variable. Fewer manual checks are needed, and preventative measures may be reduced compared to wired networks.

Time Synchronized Mesh Protocol (TSMP) ensures correct timing for individual transmissions, which lets every transmitter’s radio and processor rest between either sending or receiving a transmission. To compensate for the lack of a physical wire, in terms of security, wireless networks are equipped with a combination of authentication, encryption, verification, and key management. The amalgamation of these security practices delivers wireless network security equal to that of a wired system. The multilayered approach, anchored by gateway key-management, presents a defense sequence. Thanks to the advancements in modern field networking technology, interference due to noise from other networks has been minimized to the point of being a rare concern. Even with the rarity, fail-safes are included in WirelessHART™.

All security functions are handled by the network autonomously, meaning manual configuration is unnecessary. In addition to process control environments, power plants will typically use two simultaneous wireless networks. Transmitters allow both safety showers and eyewash stations to trigger an alarm at the point of control when activated. Thanks to reduced cost, and their ease of applicability in environments challenging to wired systems, along with their developed performance and security, wireless industrial connectivity will continue to expand.

Share your connectivity challenges with process measurement specialists, leveraging your own process knowledge and experience with their product application expertise.

Tuesday, August 15, 2017

Calibration Standards

process instrument field calibrator
Field calibration instruments
Image courtesy of Yokogawa
Calibration is an essential part of keeping process measurement instrumentation delivering reliable and actionable information. All instruments utilized in process control are dependent on variables which translate from input to output. Calibration ensures the instrument is properly detecting and processing the input so that the output accurately represents a process condition. Typically, calibration involves the technician simulating an environmental condition and applying it to the measurement instrument. An input with a known quantity is introduced to the instrument, at which point the technician observes how the instrument responds, comparing instrument output to the known input signal.

Even if instruments are designed to withstand harsh physical conditions and last for long periods of time, routine calibration as defined by manufacturer, industry, and operator standards is necessary to periodically validate measurement performance. Information provided by measurement instruments is used for process control and decision making, so a difference between an instrument’s output signal and the actual process condition can impact process output or facility overall performance and safety.

In all cases, the operation of a measurement instrument should be referenced, or traceable, to a universally recognized and verified measurement standard. Maintaining the reference path between a field instrument and a recognized physical standard requires careful attention to detail and uncompromising adherence to procedure.

Instrument ranging is where a certain range of simulated input conditions are applied to an instrument and verifying that the relationship between input and output stays within a specified tolerance across the entire range of input values. Calibration and ranging differ in that calibration focuses more on whether or not the instrument is sensing the input variable accurately, whereas ranging focuses more on the instrument’s input and output. The difference is important to note because re-ranging and re-calibration are distinct procedures.

In order to calibrate an instrument correctly, a reference point is necessary. In some cases, the reference point can be produced by a portable instrument, allowing in-place calibration of a transmitter or sensor. In other cases, precisely manufactured or engineered standards exist that can be used for bench calibration. Documentation of each operation, verifying that proper procedure was followed and calibration values recorded, should be maintained on file for inspection.

As measurement instruments age, they are more susceptible to declination in stability. Any time maintenance is performed, calibration should be a required step since the calibration parameters are sourced from pre-set calibration data which allows for all the instruments in a system to function as a process control unit.

Typical calibration timetables vary depending on specifics related to equipment and use. Generally, calibration is performed at predetermined time intervals, with notable changes in instrument performance also being a reliable indicator for when an instrument may need a tune-up. A typical type of recalibration regarding the use of analog and smart instruments is the zero and span adjustment, where the zero and span values define the instrument’s specific range. Accuracy at specific input value points may also be included, if deemed significant.

The management of calibration and maintenance operations for process measurement instrumentation is a significant factor in facility and process operation. It can be performed with properly trained and equipped in-house personnel, or with the engagement of subcontractors. Calibration operations can be a significant cost center, with benefits accruing from increases in efficiency gained through the use of better calibration instrumentation that reduces task time.


Wednesday, August 9, 2017

Rotary and Linear Damper Drives for Control of Combustion Air and Flue Gas

electro-hydraulic damper drive
Electro-hydraulic damper drive, with self contained
pump, power unit, and positioner
Image courtesy of Rexa
Combustion air and flue gas damper drives fill a critical role in the operation of fuel fired equipment, helping to meet safety, regulatory, and efficiency performance criteria with a predictable degree of reliability. It is essential to deploy the best drive technology for each application to maximize combustion efficiency, minimize emissions and reduce installation costs.

Damper Operator (Drives) Types :


Damper drives can be one of three types: pneumatic, electric, or electro-hydraulic.
  • Pneumatic - These damper operators employ compressed air as the motive force when positioning a connected damper.
  • Electric - These operators rely on electric power to operate a drive mechanism, commonly a motor and gear assembly for damper positioning.
  • Electro-hydraulic - Damper operators of this type combine an electrically operated pump that is precisely controlled. The pump moves a hydraulic fluid through a connected mechanism, such as a dual acting piston, to set the damper position.
A very important part of product selection is determination of the damper torque and sizing requirements. Actuator torque should be selected to provide the maximum torque required to operate the damper as well as to provide headroom to compensate for degradation over the life of the damper. Actuators should be evaluated for damper blade movement in both directions, at the beginning of blade movement, and while stroking through the full cycle of movement.

The Goal for Selecting the Best Drive Technology:


Reduced emissions, lower fuel consumption and improved boiler draft control.

Ways to achieve this goal may include drive operating features:
  • High speed continuous modulation 
  • Quick response to plant demand 
  • Reliability in high temperature environments 
  • Precise damper positioning, with no drift once positioned 
  • Simple commissioning and diagnostics 
  • Low operating cost
  • Minimal maintenance burden 
Information on one possible solution is provided below. For more information, share your project requirements and challenges with application specialists, combining your own knowledge and experience with their product application expertise to develop an effective solution.


Thursday, August 3, 2017

Product Update: SMARTDAC+ GX/GP Series Recorders & GM Series Data Acquisition System Release 4

data acquisition instruments and equipment
SMARTDAC line of data acquisition instruments
Yokogawa Electric Corporation announced it's Release 4 of the SMARTDAC+® GX series panel-mount type paperless recorder, GP series portable paperless recorder, and GM series data acquisition system.

With this latest release, new modules are provided to expand the range of applications possible with SMARTDAC+ systems and improve user convenience. New functions include sampling intervals as short as 1 millisecond and the control and monitoring of up to 20 loops.

Overview


Recorders and data acquisition systems (data loggers) are used on production lines and at product development facilities in a variety of industries to acquire, display, and record data on temperature, voltage, current, flow rate, pressure, and other variables. Yokogawa offers a wide range of such products, and is one of the world’s top manufacturers of recorders. Since releasing the SMARTDAC+ data acquisition and control system in 2012, Yokogawa has continued to strengthen it by coming out with a variety of recorders and data acquisition devices that meet market needs and comply with industry-specific requirements and standards.

With this release, Yokogawa provides new modules with strengthened functions that meet customer needs for the acquisition and analysis of detailed data from evaluation tests. These modules decrease the cost of introducing a control application by eliminating the need for the purchase of additional equipment.

Enhancements


The functional enhancements available with Release 4 are as follows:

High-speed analog input module for high-speed sampling.


To improve the safety of electric devices such as the rechargeable batteries used in everything from automobiles to mobile devices, evaluation tests must be conducted to acquire and analyze detailed performance data. For this purpose, sampling at intervals as short as 1 millisecond is desirable. However, this normally requires an expensive, high-performance measuring instrument. When the new high-speed analog input module, a SMARTDAC+ system can sample data at intervals as brief as 1 millisecond, which is 1/100th that of any preceding Yokogawa product. This is suitable for such high performance applications such as measurement of the transient current in rechargeable batteries to vibration in power plant turbines. A dual interval function has also been added that enables the SMARTDAC+ to efficiently and simultaneously collect data on slowly changing signals (e.g., temperature) and quickly changing signals (e.g., pressure and vibration).

PID control module for control function


In applications that need both control and recording, such as controlling the temperature of an industrial furnace or the dosage process at a water treatment plant, there is a need for systems that do not require engineering and can be quickly and easily commissioned. In a typical control and monitoring application, a separate recorder and controller is required to control temperature, flow rate and pressure. At the same time, a data acquisition station must communicate with the controller to ensure data is being capture and recorded. It is time consuming and oftentimes confusing, to ensure the controller and the data acquisition station is communicating seamlessly. By combining continuous recording function of the SMARTDAC+ and PID control module into a single platform, customers can now seamlessly control and record critical process data in one system. The SMARTDAC+ can control, monitor and record up to 20 loops. Each PID control module comes with 2 analog inputs, 2 analog outputs, 8 digital inputs and 8 digital outputs.

Four-wire RTD/resistance module for precise temperature measurement


While three-wire RTDs are widely used in many fields such as research institutes to manufacturing, some applications require higher level of precision and accuracy that is only possible with 4-wire RTDs. A 4-wire RTD is the sensor of choice for laboratory applications where accuracy, precision, and repeatability are extremely important. To satisfy this need, Yokogawa has released a 4-wire RTD/resistance module for the SMARTDAC+.

Target Markets


GX series: Production of iron and steel, petrochemicals, chemicals, pulp and paper, foods, pharmaceuticals, and electrical equipment/electronics; water supply and wastewater treatment facilities.

GP series: Development of home appliances, automobiles, semiconductors, and energy-related technologies; universities; research institutes.

GM series: Both of the above target markets.

For more information on the SMARTDAC+ GX/GP Series Recorders & GM Series Data Acquisition System contact Classic Controls at (863) 644-3642 or by visiting http://www.classiccontrols.com.

Friday, July 28, 2017

Dividends From Boiler Combustion Efficiency System

gas fired boilers in machinery room
Fuel fired boiler operation can be costly. Maintaining high
combustion efficiency returns substantial cost savings.
Steam and hot water use is prevalent throughout industrial processes. Production of these two media is most commonly accomplished with a boiler, many of which are heated by combustion of fossil fuel. Fuel fired boilers of a certain size become the focus of regulatory requirements for emissions. All boilers consume what would be construed by their owners as large amounts of costly fuel. Because of their high pressure and temperature, and the presence of a controlled combustion within an occupied facility, safety is a paramount concern.

There, fortunately, is a single solution that can help to attain useful goals with the three concerns of safety, fuel cost, and regulatory compliance. Applying an efficiency controller to manage the fuel to air ratio of the combustion system will deliver benefits far in excess of the cost to incorporate the necessary devices. The three basic goals for the fuel air controller are:
  • Maximize fuel efficiency
  • Minimize regulated emissions
  • Maintain safe operating condition
A good portion of all three goals can be accomplished through careful concerted parallel control of combustion air supply and fuel supply. The fuel air ratio must be subject to continual adjustment in response to current air conditions (which can vary on a daily basis) and the level of O2 in the flue gas. Controlling the air fuel ratio supports the following goals:
  • Preventing excess fuel vapors from entering the flue and creating an unsafe condition
  • Providing the correct amount of air to effectively combust the fuel supplied to the burner
  • Preventing excess air flow from reducing net heat transfer to the feedwater
  • Maintaining regulated emissions within required limits
  • Limiting fuel consumption to the minimum necessary to meet demand
Fireye® is a leading manufacturer of flame safeguard controls and burner management systems for commercial and industrial applications throughout the world. Their products, the first of which was developed in the 1930's, enhance the safety and efficiency of all fuel fired burners.

There are numerous capabilities built in to the company's PPC4000 series of fuel air ratio controllers. Some of the more notable include:
  • Precise fuel air ratio attained using parallel control of servos to regulate fuel and air supplies.
  • User selected burner profiles
  • Alarm contacts
  • PID operation
  • An array of inputs and outputs to accommodate sensors and devices needed to monitor and control boiler operation
  • Compatible with other products that provide additional flame and burner monitoring safety
  • Multiple boiler sequencing and cold start thermal shock protection
  • On board boiler efficiency calculation
  • User interface, optional larger touchscreen interface
Glance through just the first two pages of the document below to get a full description of the capability of this compact and comprehensive controller. You can get more detailed information, or get a professional evaluation of your current system efficiency, by contacting the application experts at Classic Controls.


Friday, July 21, 2017

Laser Spectroscopy Applied to Oxygen Measurement



Combining the analytical function of laser spectroscopy with the simple installation package of an industrial transmitter, the Sick TRANSIC100LP provides direct real time in-process oxygen measurements in a wide range of industrial processes. The short video shows how the unit is easy to install and uncomplicated to operate as part of a process measurement and control system.

Fast results and low maintenance are hallmarks of TRANSIC100LP operation. There are no sample prep requirements and no consumables. Sick explains the operating principle of the transmitter in their technical data sheet...
"The TDLS Tunable Diode Laser Spectroscopy is primarily used in high-end gas analyzers and is characterized by its highly selective measurement capability. The oxygen properties are used for O2 measurement: That means O2 atoms in the near infrared range are stimulated at specific wavelengths. A laser diode modulates the radiation precisely over an absorption peak. The high-energy radiation transfers energy to the O2 atoms and the signals becomes weaker. In the measuring probe, the laser beam hits the O2 atoms and is weakened according to the concentrations of oxygen present there. A receiver measures the intensity of the arriving radiation and accurately determines the absorption. One distinct advantage of laser spectroscopy is it´s insensitivity to possible interference. For O2 in particular, there is no absorption of other gases in the range of sampled absorption peaks."
Watch the video for more detail and some application examples. Share your gas analysis requirements and challenges with process measurement specialists, combining your own process knowledge and experience with their product application expertise to develop effective solutions.

Wednesday, July 19, 2017

Filled Impulse Lines With Pressure Sensors or Gauges

industrial pressure transmitter
Pressure transmitters and gauges are often installed
with impulse lines.
Image courtesy Yokogawa
Pressure sensors intended for use in industrial process measurement and control applications are designed to be robust, dependable, and precise. Sometimes, though, it is necessary or beneficial to incorporate accessories in an installation which augment the performance of pressure sensors in difficult or hazardous environments. There are some scenarios where the sensor must be isolated from the process fluid, such as when the substance is highly corrosive.

A way to aid pressure sensing instruments in situations where direct contact must be avoided is by using a filled impulse line. An impulse line extends from a process pipe of vessel to a pressure measurement instrument or sensor. The line can have a diaphragm barrier that isolates the process fluid from the line, or the line can be open to the process. There are best practices that should be followed in the design and installation of an impulse line to assure that the line provides a useful transmission of the process pressure to the sensor and whatever degree of isolation or protection is needed remains in effect.

The filled impulse line functions via the addition of a non-harmful, neutral fluid to the impulse line. The neutral fluid acts as a barrier and a bridge, allowing the pressure sensing instrument to measure the pressure of the potentially harmful process fluid without direct contact. An example of this technique being employed is adding glycerin as a neutral fluid to an impulse line below a water pipe.

Glycerin’s freeze point is lower than water’s, meaning glycerin can withstand lower temperatures before freezing. The impulse line connected to the water pipe may freeze in process environments where the weather is exceptionally cold, since the impulse line will not be flowing in the same way as the water pipe. Since glycerin has a greater density and a lower freezing point, the glycerin will remain static inside the impulse line and protect the line from hazardous conditions.

The use of an isolating diaphragm negates the need for certain considerations of fill fluid density, piping layout, and the need to create an arrangement that holds the fill fluid in place within the impulse line. System pressure will be transferred across the diaphragm from the process fluid to the fill fluid, then to the pressure sensor. It is important to utilize fluids and piping arrangements that do not affect the accurate transference of the process pressure. Any impact related to the impulse line assembly must be determined, and appropriate calibration offset applied to the pressure sensor reading.

An essential design element of a filled impulse line without an isolating diaphragm is that the fill fluid must be compatible with the process fluid, meaning there can be no chemical reactivity between the two. Additionally, the two fluids should be incapable of mixing no matter how much of each fluid is involved in the combination. Even with isolating diaphragms employed, fluid harmony should still be considered because a diaphragm could potentially loose its seal. If such a break were to occur, the fluids used in filled impulse lines may contact the process fluid, with an impact that should be clearly understood through a careful evaluation.

Share your pressure measurement requirements and challenges with experienced application specialists, combining your own process knowledge and experience with their technical expertise to develop an effective solution.

Sunday, July 9, 2017

Digital Valve Positioner

digital valve positioners mounted on linear and rotary valves
D3 digital positioner is suitable for linear or rotary valves
Image courtesy of  Flowserve - PMV
A digital positioner is primarily intended for use with modulating control valves. Full featured units will accommodate single or double acting actuators, as well as rotary and linear valves. A digital positioner is a precision instrument and should be treated with a commensurate amount of care to prevent damage during installation and setup.

The positioner will read a control signal input, such as 4-20 mA. The internal processing of the digital positioner will regulate the operation of air supply and venting valves integral to the positioner, regulating the motive pressure on the actuator and the resulting valve trim position. Positional feedback of the valve position is provided by a potentionmeter.

Units can be provided with one of several different communications options to enable setup and diagnostic information to be transmitted across a network. Good air supply quality and pressure will assure the best positioner performance. Various spindle and bracket arrangements are available to facilitate proper mounting of the digital positioner to the valve actuator.

The use of a digital positioner enables superior modulating valve control and repeatability, along with improved diagnostic information. More detail is contained in the document provided below. Share your fluid control challenges with valve automation experts, combining your own process knowledge and experience with their product application expertise to develop effective solutions.


Tuesday, June 27, 2017

Thermal Mass Flow Meters for Combustion Efficiency Control and Monitoring

thermal mass flow meter inline style
Example of inline thermal mass flow meter
Image Courtesy Fox Thermal Instruments
Fox Thermal Instruments, a recognized leader in the manufacture of thermal mass flow meters, has authored a white paper entitled "Reduce Energy Costs and Enhance Emissions Monitoring Systems" which provides a technical view of how the use of thermal mass flow measuring technology can be effectively employed on combustion based systems to provide efficient energy usage. Combustion efficiency contributes to the financial benefit of an operation, as well as enabling compliance with emission requirements.

Thermal mass flow measurement is a well regarded mature technology in industrial process measurement and control applications. The instrument returns a mass flow reading by measuring the heat dissipating effect of the media flow on a temperature sensor. Heat transfer is proportional to the mass flow.

The mass flow measurement instruments are very popular for several reasons. They have no moving parts, have a fairly unobstructed flow path, are accurate over a wide range of flow rates, calculate mass flow rather than volume, measure flow in large or small piping systems, and do not need temperature or pressure compensation.

The white paper is provided below for you to read. It is informative and will prove a good investment of time to read. Share your flow measurement challenges of all types with process instrumentation specialists, combining your own process knowledge and experience with their product application expertise to develop effective solutions.


Thursday, June 22, 2017

Thoughts on Upside of Outsourcing Industrial Project Work

liquid metering system for pipeline
Many companies that use these liquid metering systems possess
some of the technical and physical resources to design and build
their own. Outsourcing the work can bring the best resources to bear
on the project and free in-house personnel for other tasks.
Photo courtesy Sagebrush Pipeline Equipment
Industrial process measurement and control entails projects, lots of projects. Equipment and instruments that are the life of our processes periodically need modification, replacement, major service or maintenance. Large scale work is generally contracted out for a variety of reasons, not the least of which is that the manpower, equipment, or license and certification requirements are beyond what the stakeholder (the company) may possess . But on smaller projects, an organization is often confronted with the decision of whether to do the work in house or contract it out. There are potential perils and rewards, regardless of the path you take.

The title of this article reveals my leanings on the issue of whether to outsource. Based upon my own project experience and observations of others in their pursuit of project completion, I am generally in favor of it.

Prior to determining whether to use internal or external resources, take the time to document some elemental project requirements.
  • What is the starting condition of the project? It is important to systematically assess the existing conditions, as they have a substantive impact on the scope of work needed to be accomplished to reach the point of completion.
  • What is to be the ending condition of the project, the definition of completion? There must be a defined ending condition that, once achieved, signals that the project is complete. Start with a general statement and add details garnered from various stakeholders. Keep in mind that the end condition will need to satisfy all stakeholders, so their input should be influential.
  • How much time is allowed to complete the work? This pertains to the needs of the company, not the time required to accomplish the task. If there is a deadline for the project, it must be known. An example would be completion of combustion efficiency upgrades prior to the effective date for a new emissions standard. It's not when the work can be done, but when it must be done
  • How much time will be required to complete the work? This may be difficult to ascertain at project inception, but some allowance should be assigned to planning, equipment and material procurement, actual hands-on trade and technical work, startup, testing, commissioning, and final documentation and training. This exercise will help you develop a more detailed picture of what is involved in getting the project completed and how long the timeline might be.
  • What special trade or technical skills will be required? You may need skilled or certified individuals to perform certain tasks. It is essential to know the extent of these resource requirements.
  • Does any of the work require a license or permit? Some extents of modification may require permits from a local jurisdiction and/or licensed trades to perform the work. New work often requires permits. Every jurisdiction has its own set of standards and requirements which must be considered.
Recall that I said document the project requirements. This is important for everyone involved. You want to prevent the drifting of performance benchmarks during the course of the project. This should be especially important if you are the one responsible for project completion. Injections of additional requirements midstream have the potential to destroy your carefully considered plans and result in delays, increased cost, compromised quality, and dissatisfied stakeholders. If somebody wants a change, insist that they be realistic about its impact on the schedule and budget.

There are three major decision factors to consider for in-house or outsourced projects.
  • Technical resources: Do you have people on staff with skills and qualifications that match those that will be needed to accomplish all the tasks comprising the project? That may include substantially more than the mechanics needed to install newly acquired parts and equipment. Consider engineering and design, the production of required documentation, procurement and scheduling of materials and equipment, proactive scheduling and coordination of the various tasks, and general project management.
  • Special equipment and tools: Are there any particular tools, instruments, or equipment that will be required on the project? Does the organization have these resources on hand? If not, how will they be procured, how long does it take, how much does it cost?
  • Available manpower: Are there enough personnel in the organization with the needed skills to complete the work AND is there enough slack available in their schedule to allow a sufficient amount of their time to be devoted to the project to achieve a timely completion? This is critical and applies to both the skilled trade labor and administrative manpower requirements.
An honest and thoughtful consideration of the three areas outlined will likely convince you that, unless the project is small in scale and simple in scope, outsourcing to a contractor with expertise and experience in the work to be accomplished is your best course of action. Sure, dealing with contractors can be difficult and merely outsourcing will not be a panacea for all the challenges presented by any project. However, if a contractor's fulfillment of the three considerations outlined above are better than yours, there is probably advantage in hiring them.

In the big picture, outsourcing can keep your company's resources available to perform tasks more directly related to revenue generation, which is what they were likely hired for in the first place. Outsourcing draws comparatively little from the organization resource pool and, candidly, puts the bulk of the performance burden and the associated aggravation and stress on another organization that is probably better equipped to handled it than you. Done right, it can be a big win for everyone.

Share your process and fluid control projects with experienced professionals and seek out opportunities to be more effective.

Friday, June 16, 2017

Flow Measurement - Sometimes the Simple Solution is Best

variable area flow meter measures and indicates fluid flow directly
These variable area flow meters also permit visible
inspection of flowing media
Courtesy ERCO Engineering Corp.
For process control and commercial or industrial applications, there are numerous methods of flow measurement from which to choose. Technologies range from very simple applications of physical principles to deployment of very specialized electronics and sensors. The available range of accuracy, response, and cost is quite broad, with a general expectation that higher cost will deliver better performance and accuracy.

Making the best instrument selection for a flow measurement application should include an assessment of what the operators really need in order to safely and effectively run the process or perform the task related to the measurement of fluid flow. Installing instrumentation with capabilities far beyond what is required is almost certainly a waste of financial resources, but may also have an unexpected impact on operators. Through the generation of data that, while accurate, does not provide any actionable information about process condition, operators can be misled, similar to the occurrence of a false or nuisance alarm. Some applications call for high accuracy, some do not. Define your informational needs and select instruments that will meet those needs.

There is a large array of applications that can be satisfied with simpler, less costly measurement technology. These devices often employ turbines or vanes to produce an indication of flow rate. Incorporated into some of the instruments is a means to visually observe the flowing liquid to verify color and clarity. Simple devices sometimes are intended only to indicate the presence of fluid flow, and whether the flow rate is high or low. Configurations are available that allow insertion into lines under pressure (hot tap) through a full port ball valve. Other variants with combinations of features and capabilities abound.

The selection range is enormous, so define your minimum needs first, then search for a compatible product. Your search can be enhanced by contacting an instrumentation specialist. Combining your process expertise with their broad product knowledge will produce effective solutions.



Friday, June 9, 2017

Pressure Safety Valves

industrial safety valve for pressure relief
One of many variants of safety valves
for pressurized systems
GE Consolidated
Gases and steam are compressible. It is normal that when gas or steam reaches the disc in a valve, it compresses and builds up before passing through the valve. This compression may cause a rapid build up of system pressure and be potentially harmful. There are other process conditions, such as boiler control malfunction, that can create elevated pressure in a closed system. Every system and component in a pressurized system has a safe operating pressure limit that must not be exceeded.

A conventional liquid type relief type relief valve doesn't open fast enough to relieve gas or steam pressure. The slower action may actually contribute to pressure build-up. A compressible gas system requires a valve that will pop wide open under excessive pressure. That's the design principle behind a pressure safety valve, also called a safety valve, or sometimes a pressure relief valve.

Safety valves and relief valves are similar and share common design and components. The direct acting safety valve is made up of a inlet, outlet, housing, disk, seat, spring, and in some instances, a manual operating lever. The safety valve assembly is protected by the housing which provides appropriate threaded, welded or flanged pipe connection to the system. There will be a means to set the acting pressure of the valve, and specific procedures recommended by the manufacturer should be closely followed when installing and setting the valve. The disk stays in place until the system pressure increases to the point when the disk “pops” off the seat and sends system steam or gas to the outlet. An adjusting screw is commonly used to adjust the valve set point or popping pressure. Spring tension hold the disk against the seat, and can change over time and require recalibration of the adjusting screw.

The popping open of the safety valve is a function of the design of the disk. Among manufacturers of this type of valve, there may be differing methods of producing the same operating result. At the popping pressure, or set point, the disk will slightly lift off the seat. Once that happens, the design of the valve causes the valve to pop fully open quickly.

When the pressure drops to a level below the set point, the same operation happens in reverse, and because the high velocity of the escaping gas, the valve must close quickly and tightly. Otherwise the high velocity will damage the surfaces of the valve opening.

The pressure at which a valve opens all the way, is called the popping pressure. The opposite (rapid closure of the valve) is called positive seating. The difference between the popping pressure and the positive seating is called blowdown. For example if popping pressure is 220 PSI, and the positive sealing pressure is 200 PSI, the blowdown is 20 PSI.

The application of these valves is not a control operation, it is a safety operation. Get properly responsible and qualified individuals involved in selection. Your search for the right valve can be enhanced by consulting with product specialists, with whom you can share your process control and safety requirements and challenges.


Thursday, June 1, 2017

Current to Pneumatic Converter

current to pneumatic converter
Current to pneumatic converter
Courtesy Yokogawa
A straight forward device, a current to pneumatic converter produces a pneumatic output signal that is proportional to a control level input signal of 4 to 20 mA or 10 to 50 mA. This provides a useful interface between electronic controllers and pneumatically operated valves, air cylinders, or other air operated control elements.

Pneumatic signals are regularly used throughout many installations as matter of safety, legacy, or because a pneumatic signal can provide motive power to an operating device such as a valve positioner. Electrical control signals can be transmitted long distances across wires to deliver control signals to operating elements. The current to pneumatic converter provides a bridge between the two systems and allows the most beneficial aspects of each to be brought to bear on process operation.

Converters are available in standard variants that accommodate a number of hazardous location designations, as well as several output pressure ranges and calibrations. Share your process control connectivity challenges with application specialists, combining your own process knowledge and experience with their product application expertise to develop effective solutions.


Monday, May 22, 2017

CSB Animation and Analysis of Torrance Refinery Explosion



The United States Chemical Safety Board investigates industrial accidents related to chemical processing. It is an advisory agency that provides recommendations for improving safety in chemical related operations.

Some accident events are illustrated with animated reenactment, along with the events determined to be contributory to the cause. In the case of the Torrance, CA refinery explosion, the animation shows how a worn valve that did not provide adequate shutoff was part of the string of events that ultimately led to disaster. Also of concern was the procedure followed in responding to the discovery of an unexpected condition indicating substantial process malfunction.

Fortunately, the flammable gases were detected by personal safety gear, enabling workers to clear the area before ignition occurred.

The video describes how the process operated and what failed. The key takeaway is that a single failure condition can reveal another that may have gone undetected. Also, operating under adverse conditions, trying to formulate strategy, is difficult and may not produce the most effective plan.

Industrial processing can be complicated and dangerous. Diligence in design, installation, and continuing maintenance of process equipment is part of the overall safety plan for every facility.

Consider your own process and where weaknesses may be lurking. Reach out to equipment and instrumentation vendors for advice and expertise regarding specific items of concern.

Thursday, May 18, 2017

New Thermal Mass Flow Meter

industrial process measurement instrument thermal mass flowmeter transmitter
The new model FT4A thermal mass flowmeter, shown
inserted in process pipe.
Courtesy Fox Thermal Instruments
Fox Thermal Instruments, manufacturer of thermal technology based mass flow instruments for industrial process measurement, has introduced a new more advanced product providing the accuracy and reliability users expect from Fox, along with some new features extending the ease of use and applicability of the instrument.

The basic operation involves measuring flow in relation to its heat dissipating effect on a temperature sensor. Higher mass flow produces a higher rate of heat transfer.

The mass flow measurement instruments are very popular for several reasons. They have no moving parts, have a fairly unobstructed flow path, are accurate over a wide range of flow rates, calculate mass flow rather than volume, measure flow in large or small piping systems, and do not need temperature or pressure compensation. While most thermal flow meters are used to measure flowing gas, some also measure flowing liquids.

The new model FT4A incorporates the latest feature updates and technology advancements. More information can be found in the datasheet provided below. Share your gas flow measurement challenges with instrumentation specialists. Combine your own process experience and knowledge with their product application expertise to develop effective solutions.

Tuesday, May 9, 2017

In-Line Process Refractometer



Refractometry, a combination of physics, materials, and chemistry, is a measurement technique which determines the composition of known substances by means of calculating their respective refractive indexes (RI). RIs are evaluated via a refractometer, a device which measures the curve, or refraction, resulting when the wavelength of light moves from the air into and through a tested substance. The unitless number given by the refractometer, usually between 1.3000 and 1.7000, is the refractive index. The composition of the substance is then determined with a comparison of the measured RI to standard curves developed for the substance. There are four general types of refractometers: digital, analog, lab, and inline process. Although refractometry can measure a variety of substances, the most common group of known substances to calculate is liquids. Liquid based continuous processes benefit from the use of an inline process refractometer to provide real time data about process output or intermediate steps.

The ultimate focus of industrial refractometry is to describe what is in a final product or output of a process step. A field which relies directly on the results of refractometry is gemology. Gemological refractometry is crucial for accurately identifying the gemstones being classified, whether the gemstones are opaque, transparent, or translucent.

Other common examples of industrial refractometry uses include measuring the salinity of water to determine drinkability; figuring beverage ratios of sugar content versus other sweeteners or water; setting eye-glass prescriptions; understanding the hydrocarbon content of motor fuels; totaling plasma protein in blood samples; and quantifying the concentration of maple syrup. Regarding fuels, refractometry scrutinizes the possible output of energy and conductivity, and for drug-testing purposes, refractometry measures the specific gravity, or the density, of human urine. Regarding food, refractometry has the ability to measure the glucose in fruit during the fermentation process. Because of this, those in food processing can know when fruit is at peak ripeness and, in turn, also understand the most advantageous point in the fruit’s lifetime to put it on the market.

The determination of the substance composition of the product examples listed above all speak to the purpose of quality control and the upholding of standardized guidelines. Consumers rely on manufacturers not only to produce these products safely and in vast quantity, but to deliver the customer a consistent taste experience when the product is consumed. Brand marketing success relies on maintaining the standards for the composition of substances that comprise the product. One could argue that an in-line process refractometer is actually a marketing tool of some sort, at least to the extent that it is employed to maintain consistent product quality.

Equipment manufacturers have developed numerous refractometer configurations tailored to specific use and application. Each has a set of features making it the advantageous choice for its intended application. Product specialists can be invaluable sources of information and assistance to potential refractometer users seeking to match the best equipment to their application or process.

Wednesday, May 3, 2017

Continuous Liquid Level Measurement Technologies Used in Industry

magnetic level indicator coupled with guide wave radar level transmitter
Magnetic level indicator coupled with
guide wave radar level transmitter
Courtesy Vega
Although continuous level measurement technologies have the ability to quantify applications for bulk solids, slurries, and granular materials, liquid level technologies stand out as being exceptionally crucial to the foundation of process control. Called “transmitters,” these continuous liquid level measurement devices employ technologies ranging from hydrostatics to magnetostriction, providing uninterrupted signals that indicate the level of liquid in a vessel, tank, or other container.

Hydrostatic devices focus on the equilibrium of dynamic and static liquids. There are three main types of hydrostatic transmitters: 1) displacer, 2) bubbler, and 3) differential pressure.

The displacer transmitters utilize a float placed within the liquid container. With its buoyancy characterized to the liquid and the application, the float, a connecting stem, and a range spring or similar counterbalance represents the liquid level in terms of the movement of the displacer (float). The displacement, or movement, of the assembly is converted into an electric signal for use by the monitoring and control system.

Bubbler transmitters are used for processing vessels that operate at atmospheric pressure. This method introduces a purge gas or an inert gas, e.g. air or dry nitrogen, into a tube extending into the liquid vessel. Precise measurement of the pressure exerted on the gas in the dip tube by the liquid in the tank is used to determine the height of the liquid.

Differential pressure (DP) transmitters rely directly on, in a basic explanation, the pressure difference between the bottom and top of the container. Precise pressure measurement is used to determine the height of the liquid in the tank. One of the most advantageous aspects of DP transmitters is that they can be used in pressurized containers, whereas displacer and bubbler transmitters cannot.

Other examples of level transmitter technologies––which are not hydrostatic devices––are magnetostrictive, capacitance, ultrasonic, laser, and radar.

In magnetostrictive level transmitters the measuring device, a float, has a series of magnets that create a magnetic field around a wire enclosed in a tube. Electrical pulses sent down the wire by the transmitter head product a torsional wave related to the position of the float, which moves with changes in liquid surface level. The transit time of the torsion wave back to the sensing head is measured and the depth of the liquid, as indicated by the float position, can be determined.

Capacitance transmitters are best applied to liquids that have high dielectric constants. Essentially, changes in the capacitance of the sensor / tank / liquid assembly will vary proportionately with the liquid level. The change in capacitance is measured and converted to an appropriate electrical signal.

Ultrasonic level transmitters emit ultrasonic energy from the top of the vessel toward the liquid. The emissions are reflected by the liquid surface and them time required for the signal to return to the source is used to determine the distance to the liquid surface.

Laser level transmitters operate similarly to an ultrasonic level transmitter. However, instead of using ultrasound signals, they use pulses of light.

Radar level transmitters involve microwaves emitting downward from the top of the container to the liquid’s surface and back again; the measurement is the entire time-frame. One variable radar level measurement echoes capacitance measurements: they both involve dielectric contact of liquid.

The precise measurement of transmit time for a wave or pulse of energy is employed in several of the technologies, the measurement of pressure in others. Each technology has a set of attributes making it an advantageous selection for a particular range of applications. Share your liquid level measurement challenges with an application expert, combining you process knowledge with their product application expertise to develop effective solutions.





Wednesday, April 26, 2017

Operating Principles and Application of Vortex Flowmeters

vortex flow meter flowmeter
Vortex Flowmeter
Courtesy Yokogawa
To an untrained ear, the term “vortex flowmeter” may conjure futuristic, potentially Star Wars inspired images of a hugely advanced machine meant for opening channels in warp-space. In reality, vortex flowmeters are application specific, industrial grade instruments designed to measure an important element of a fluid process control operation: flow rate.

Vortex flowmeters operate based on a scientific principle called the von Kármán effect, which generally states that a fluid flow will alternately shed vortices when passing by a solid body. “Vortices” is the plural form of vortex, which is best described as a whirling mass, notably one in which suction forces operate, such as a whirlpool. Detecting the presence of the vortices and determining the frequency of their occurrence is used to provide an indication of fluid velocity. The velocity value can be combined with temperature, pressure, or density information to develop a mass flow calculation. Vortex flowmeters exhibit high reliability, with no moving parts, serving as a useful tool in the measurement of liquid, gas, and steam flow.

While different fluids present unique challenges when applying flowmeters, steam is considered one of the more difficult to measure due to its pressure, temperature, and potential mixture of liquid and vapor in the same line. Multiple types of steam, including wet steam, saturated steam, and superheated steam, are utilized in process plants and commercial installations, and are often related to power or heat transfer. Several of the currently available flow measurement technologies are not well suited for steam flow applications, leaving vortex flowmeters as something of a keystone in steam flow measurement.

Rangeability, defined as a ratio of maximum to minimum flow, is an important consideration for any measurement instrument, indicating its ability to measure over a range of conditions. Vortex flowmeter instruments generally exhibit wide rangeability, one of the positive aspects of the technology and vortex based instruments.

The advantages of the vortex flowmeter, in addition to the aforementioned rangeability and steam-specific implementation, include available accuracy of 1%, a linear output, and a lack of moving parts. It is necessary for the pipe containing the measured fluid to be completely filled in order to obtain useful measurements.

Applications where the technology may face hurdles include flows of slurries or high viscosity liquids. These can prove unsuitable for measurement by the vortex flowmeter because they may not exhibit a suitable degree of the von Kármán effect to facilitate accurate measurement. Measurements can be adversely impacted by pulsating flow, where differences in pressure from the relationship between two or more compressors or pumps in a system results in irregular fluid flow.

When properly applied, the vortex flowmeter is a reliable and low maintenance tool for measuring fluid flow. Frequently, vortex flow velocity measurement will be incorporated with the measurement of temperature and pressure in an instrument referred to as a multivariable flowmeter, used to develop a complete measurement set for calculating mass flow.

Whatever your flow measurement challenges, share them with a flow instrument specialist, combining your process knowledge with their product and technology expertise to develop effective solutions.


Friday, April 21, 2017

Thermal Mass Flowmeters



Thermal dispersion mass flow meters provide an accurate means of mass flow measurement with no moving parts and little or no encroachment on the media flow path. There are a number of different configurations to be found among various manufacturers, but all function in basically the same manner.

Two sensors are exposed to the heat transferring effect of the flowing media. When the media composition is known, the mass flow can be calculated using the meter reading and the pipe cross sectional area. One of the flow meter sensors is heated, the other is allowed to follow the media temperature as a reference. The heat dispersion from the heated sensor is measured and used to calculate mass flow.

Some positive attributes of thermal dispersion flow meters:
  • In-line and insertion configurations available to accommodate very small to large pipe sizes
  • Rugged Construction
  • No moving parts
  • Measure liquid or gas in a wide range of applications
  • Measurement not adversely impacted by changes in pressure or temperature
  • Wide range of process connections 
  • In-line versions provide unobstructed flow path
  • Wide turndown suitable for extended flow range
  • Flow rate and totalized flow
  • 4-20 mA output interfaces easily with other instruments and equipment
Share all your process measurement challenges and requirements with product application specialists, combining your process knowledge with their product application expertise to develop effective solutions.

Thursday, April 13, 2017

Digital Bar Graph Process Displays Still Have a Place in Your Panel

bargraph digital analog indicators for industrial control
Analog process value indicators are available in a wide
variety of form factors
Courtesy Ametek - Dixson
Analog indicators provide a graphic display of a process value. The value can be a setpoint for a particular operation, or the value returned from a sensor or transmitter. In the current digitally focused environment, we sometimes devalue analog displays. They do, however, have some attributes that set them apart from digital displays. Let's look at bar graph displays.

The ability of an analog display, such as a bar graph, to display useful information depends heavily on its graphical scale. The scale length and resolution should allow significant change in the process value to be displayed in a manner that is readily discernible to an operator. Bar graph displays are composed of illuminated segments, so any significant change in the process value should be sufficient to change the illuminated state of one or more segments.

The scale length and range of the display should extend across the whole of the process, and slightly beyond. An indicating range that far exceeds any possible process value can compromise the display resolution and fail to maximize the use of the instrument. For example, an operation with a maximum process value of 100 should not be paired with an indicating scale that extends to 2500. In this case, the entire range of possible process values indicated will only use four percent of the available indicating scale. A scale range extending to 150 would be more appropriate and deliver better performance.

Analog indicators, especially bar graphs, can provide rapid assessment of the state of a process value. As an illustration, it may not be necessary for an operator to know process temperature with resolution to a tenth of a degree. The key requirement may be to answer the question, "Is it too hot?". Analog displays excel at providing rapid answers to those types of decision-making questions. An onboard digital display of real time process value provides additional information about current process state.

Analog bar graph displays have a proven track record of accuracy and reliability over decades of field use. Modern units include programmable auxiliary functions and take advantage of their microprocessor based design to enable adaptation and setup for almost any application. More information is included in a data sheet below, or your can share your process indication requirements and challenges with instrumentation specialists. The combination of your own process knowledge and experience with their product application expertise will yield an effective solution.


Tuesday, April 4, 2017

Achieving Close Control of Process Temperature

process temperature controller DIN mount digital display
Process Temperature Controller
Courtesy Yokogawa
Temperature control is a common operation in the industrial arena. Its application can range across solids, liquids, and gases. The dynamics of a particular operation will influence the selection of instruments and equipment to meet the project requirements. In addition to general performance requirements, safety should always be a consideration in the design of a temperature control system involving enough energy to damage the system or create a hazardous condition.

Let's narrow the application range to non-flammable flowing fluids that require elevated temperatures. In the interest of clarity, this illustration is presented without any complicating factors that may be encountered in actual practice. Much of what is presented here, however, will apply universally to other scenarios.

What are the considerations for specifying the right equipment?

KNOW YOUR FLOW


First and foremost, you must have complete understanding of process fluid properties.

  • Specific Heat - The amount of heat input required to increase the temperature of a mass unit of the media by one degree.
  • Minimum Inlet Temperature - The lowest media temperature entering the process and requiring heating to a setpoint. Use the worst (coldest) case anticipated.
  • Mass Flow Rate - An element in the calculation for total heat requirement. If the flow rate will vary, use the maximum anticipated flow.
  • Maximum Required Outlet Temperature - Used with minimum inlet temperature in the calculation of the maximum heat input required.

MATCH SYSTEM COMPONENT PERFORMANCE WITH APPLICATION


  • Heat Source - If temperature control with little deviation from a setpoint is your goal, electric heat will likely be your heating source of choice. It responds quickly to changes in a control signal and the output can be adjusted in very small increments to achieve a close balance between process heat requirement and actual heat input.
  • Sensor - Sensor selection is critical to attaining close temperature control. There are many factors to consider, well beyond the scope of this article, but the ability of the sensor to rapidly detect small changes in media temperature is a key element of a successful project. Attention should be given to the sensor containment, or sheath, the mass of the materials surrounding the sensor that are part of the assembly, along with the accuracy of the sensor.
  • Sensor Location - The location of the temperature sensor will be a key factor in control system performance. The sensing element should be placed where it will be exposed to the genuine process condition, avoiding effects of recently heated fluid that may have not completely mixed with the balance of the media. Locate too close to the heater and there may be anomalies caused by the heater. A sensor installed too distant from the heater may respond too slowly. Remember that the heating assembly, in whatever form it may take, is a source of disturbance to the process. It is important to detect the impact of the disturbance as early and accurately as possible.
  • Controller - The controller should provide an output that is compatible with the heater power controller and have the capability to provide a continuously varying signal or one that can be very rapidly cycled. There are many other features that can be incorporated into the controller for alarms, display, and other useful functions. These have little bearing on the actual control of the process, but can provide useful information to the opeartor.
  • Power Controller - A great advantage of electric heaters is their compatibility with very rapid cycling or other adjustments to their input power. A power controller that varies the total power to the heater in very small increments will allow for fine tuning the heat input to the process.
  • Performance Monitoring - Depending upon the critical nature of the heating activity to overall process performance, it may be useful to monitor not only the media temperature, but aspects of heater or controller performance that indicate the devices are working. Knowing something is not working sooner, rather than later, is generally beneficial. Controllers usually have some sort of sensor failure notification built in. Heater operation can be monitored my measurement of the circuit current.

SAFETY CONSIDERATIONS


Any industrial heater assembly is capable of producing surface temperatures hot enough to cause trouble. Monitoring process and heater performance and operation, providing backup safety controls, is necessary to reduce the probability of damage or catastrophe.

  • High Fluid Temperature - An independent sensor can monitor process fluid temperature, with instrumentation providing an alert and limit controllers taking action if unexpected limits are reached.
  • Heater Temperature - Monitoring the heater sheath temperature can provide warning of a number of failure conditions, such as low fluid flow, no fluid present, or power controller failure. A proper response activity should be automatically executed when unsafe or unanticipated conditions occur.
  • Media Present - There are a number of ways to directly or indirectly determine whether media is present. The media, whether gaseous or liquid, is necessary to maintain an operational connection between the heater assembly and the sensor.
  • Flow Present - Whether gaseous or liquid media, flow is necessary to keep most industrial heaters from burning out. Understand the limitations and operating requirements of the heating assembly employed and make sure those conditions are maintained.
  • Heater Immersion - Heaters intended for immersion in liquid may have watt density ratings that will produce excessive or damaging element temperatures if operated in air. Strategic location of a temperature sensor may be sufficient to detect whether a portion of the heater assembly is operating in air. An automatic protective response should be provided in the control scheme for this condition.
Each of the items mentioned above is due careful consideration for an industrial fluid heating application. Your particular process will present its own set of specific temperature sensing challenges with respect to performance and safety. Share your requirements with temperature measurement and control experts, combining your process knowledge with their expertise to develop safe and effective solutions.

Wednesday, March 22, 2017

Scenarios for Selecting Uninterruptible Power Supplies for Industrial Applications

industrial uninterruptible power supply UPS
UPS for industrial applications
Courtesy Ametek Solid State Controls
Process control runs on electric power. That is no secret. It follows that process uptime is first and foremost a function of the delivery of electric power. Uninterruptible power supplies provide backup power, filtering, and other functionality that helps assure the availability of clean electric power for control system operation. Even if machinery power fails, maintaining control system operation to monitor and document process conditions, and take any corrective action needed to maintain safe conditions, is paramount.

Ametek Solid State Controls manufactures world class UPS equipment and systems for industrial use. The company authored a white paper outlining three primary situations where a UPS is needed. The paper is included below for you to read.

Share your industrial power requirements with a product application specialist. Combine your facilities and process knowledge with their product application expertise to develop an effective solution.