Monday, October 9, 2017

Fluid Processes - When A Butterfly Valve Is The Best Choice

high performance butterfly valve with actuator
High performance butterfly valve with actuator
Image courtesy ABZ Valve
Industrial process control valves are available in uncountable combinations of materials, types, and configurations. An initial step of the selection procedure for a valve application should be choosing the valve type, thus narrowing the selection field to a more manageable level. Valve "types" can generally be classified by the closing mechanism of the valve.

A butterfly valve has a disc that is positioned in the fluid flow path. In the most common form of butterfly valve, the disc rotates around a central axis, the stem, through a 90 degree arc from a position parallel to the flow direction (open) to perpendicular (closed). A variety of materials are used in the valve body construction, and it is common to line the valve with another material to provide special properties accommodating particular process media.

What attributes might make a butterfly valve a beneficial selection over another valve type?
  • The closure arrangement allows for a comparatively small size and weight. This can reduce the cost, space, and support requirements for the valve assembly.
  • Generally low torque requirements for valve operation allow for manual operation, or automation with an array of electric, pneumatic, or hydraulic actuators.
  • Low pressure drop associated with the closure mechanism. The disc in the flow path is generally thin. In the fully open position, the disc presents its narrow edge to the direction of flow.
  • Quarter turn operation allows for fast valve operation.
  • Some throttling capability is provided at partially open positions.
  • Small parts count, low maintenance requirements.
What may be some reasons to consider alternate valve types?
  • Butterfly valve throttling capability is generally limited to low pressure drop applications
  • Cavitation can be a concern.
  • Some sources mention the possibility of choked flow as a concern under certain conditions.
Butterfly valves, like other valve types, have applications where they outperform. Careful consideration and consultation with a valve expert is a first step toward making a good selection. Combine your process know-how with the product application expertise of a professional sales engineer to produce the best solutions to your process control challenges.



Thursday, October 5, 2017

Nitrogen Generator Animation Video - Pressure Swing Adsorption



Nitrogen is utilized throughout the industrial and commercial sectors It is incorporated as part of many compounds used to make a wide range of products. Nitrogen is also used as a cooling medium and as a means to isolate flammable or reactive compounds from oxygen.

There are several methods employed to generate or provide nitrogen, each with certain aspects making them advantageous to a certain range of applications. Convenience, reliability of supply, space, cost, energy consumption, purity, and a host of other factors can weigh on the decision for nitrogen supply.

Parker Balston, a globally recognized manufacturer of gas process equipment, employs pressure swing adsorption in some of its nitrogen generating equipment. The video illustrates the process and the brochure included below details the product offering for a wide range of applications. Nitrogen generation on site can provide an effective and economic means of providing a clean nitrogen supply for industrial operations. Share your requirements with product application specialists to see how a nitrogen generator system can benefit your operation.


Wednesday, September 27, 2017

VigilantPlant Solutions Partner Program

control station for industrial process automation and control
Classic Controls - Authorized Systems Integrator
under Yokogawa VigilantPlant Solutions Partner Program
Image courtesy of Yokogawa  
Classic Controls is one of a very few Authorized Systems Integrators in the Yokogawa VigilantPlant Solutions Partner Program. Extensive and specialized capability is a core requirement of membership. Classic Controls, in addition to their provision of total solutions for process measurement, control, and automation challenges, provides special focus on the Yokogawa CENTUM VP, CENTUM CS 3000 R3, and CENTUM CS control platforms. Classic Controls has the experience, expertise, training, and resources to deliver consultation, installation, and support for these and other Yokogawa process measurement, control and automation products and systems.

Whether considering a new installation, or upgrading in-place systems, share your plans and challenges with process control and automation experts. Leverage your own experience and knowledge with their product application expertise to develop effective solutions.



Friday, September 22, 2017

ASCO Fluid Automation Applications in Power Plants

power plant for electrical generation
ASCO products have applications throughout the power
generation industry.
Here is a partial listing of power generation plant applications where ASCO products provide reliable solutions.

ASCO Solenoid Valves

Ideal for steam, air, or liquid flows. Throughout the power plant, our solenoid valves provide superior service in areas such as SO2 scrubbing, turbine lubrication systems, and igniter burner No. 2 fuel lines to name a few.

Numatics FRLs

Filters, regulators, and lubricators treat air quality and pressure in your plant’s pneumatic system. Apply them to control pressure or meet filtration requirements for your pneumatic equipment. These high-performance products are available in multiple configurations, including electronic regulators.

ASCO Angle-Body Piston Valves

Well suited to replace ball valves in air, water, and steam applications with pipe sizes 2 1/2" or smaller and up to 150 psi. This compact solution reduces cost of ownership, eliminates water ham- mer, and creates tight shutoff in both directions. Available with limit switches, AS-interface®, and DeviceNetTM protocols, Class I, Div. 2 HS Series position indicators, and low power solenoids.

ASCO Dust Collector Valves

ASCO integral or remote pilot valves are especially designed for dust collector applications, combining high flow, long life, and extremely fast opening and closing to produce reliable and economical operation. Valves with quick mount connections eliminate time consuming thread cutting and sealing.

ASCO Pressure Sensors

A range of high-quality sensors with long-life designs and ensured repeatability, these signal when process media reach pressure set points. They play a vital part throughout the entire power generation process.

ASCO Redundant Control System

The ASCO RCS is a redundant pilot valve system that acts as a single 3-way valve. Features include the ability to perform automatic online testing of the redundant solenoid valves, automatic partial stroke testing of the process valve, and online maintenance capabilities. Use this product in high reliability or critical applications. Certified per IEC 61508 Parts 1 and 2 and are SIL 3 capable.

ASCO Solenoid Pilot Valves

Designed to operate at high cycles or for long periods of dormancy, these 3 and 4-way models provide ensured action in demanding applications. Features include, manual operators, high flows, and explosion-proof options. Plus new 0.55 W models are perfect for networks with low power limitations. Brass and stainless steel versions available.

Numatics Cylinders

A large range of high quality Numatics cylinders that can withstand the harsh environment of power generation systems. Whether you are operating a scrubber, bag house, or damper controls, Numatics cylinders are used to open and close large orifices in these systems. Available in 17 bore sizes from 1 1/2" to 24".

Share your application challenges with a product specialist, combining your own process and facilities knowledge and experience with their product application expertise to develop an effective solution.



Thursday, September 14, 2017

Training Program for UPS Users



As part of their dedication to delivering power management equipment and systems that help maintain business operation, Ametek Solid State Controls provides a comprehensive training program for customers, to enable them to understand the operation of their equipment and derive the maximum value from its operation. This short video provides a synopsis of the training program and company philosophy that assure customers are empowered by their equipment, not burdened.

Share your power conditioning and backup power requirements with dedicated specialists, leveraging your own knowledge and experience with their product application expertise to develop effective solutions.

Wednesday, September 6, 2017

Wireless Transmitters In Process Measurement and Control

wireless industrial temperature transmitter
Industrial wireless temperature transmitter, one
of many variants available for process measurement
Image courtesy Yokogawa
In process control, various devices produce signals which represent flow, temperature, pressure, and other measurable elements of the process. In delivering the process value from the measurement point to the point of decision, also known as the controller, systems have traditionally relied on wires. More recently, industrial wireless networks have evolved, though point-to-point wireless systems are still available and in use. A common operating protocol today is known as WirelessHARTTM, which features the same hallmarks of control and diagnostics featured in wired systems without any accompanying cables.

Wireless devices and wired devices can co-exist on the same network. The installation costs of wireless networks are decidedly lower than wired networks due to the reduction in labor and materials for the wireless arrangement. Wireless networks are also more efficient than their wired peers in regards to auxiliary measurements, involving measurement of substances at several points. Adding robustness to wireless, self-organizing networks is easy, because when new wireless components are introduced to a network, they can link to the existing network without needing to be reconfigured manually. Gateways can accommodate a large number of devices, allowing a very elastic range for expansion.

In a coal fired plant, plant operators walk a tightrope in monitoring multiple elements of the process. They calibrate limestone feed rates in conjunction with desulfurization systems, using target values determined experientially. A difficult process environment results from elevated slurry temperature, and the associated pH sensors can only last for a limited time under such conditions. Thanks to the expandability of wireless transmitters, the incremental cost is reduced thanks to the flexibility of installing new measurement loops. In regards to maintenance, the status of wireless devices is consistently transmitted alongside the process variable. Fewer manual checks are needed, and preventative measures may be reduced compared to wired networks.

Time Synchronized Mesh Protocol (TSMP) ensures correct timing for individual transmissions, which lets every transmitter’s radio and processor rest between either sending or receiving a transmission. To compensate for the lack of a physical wire, in terms of security, wireless networks are equipped with a combination of authentication, encryption, verification, and key management. The amalgamation of these security practices delivers wireless network security equal to that of a wired system. The multilayered approach, anchored by gateway key-management, presents a defense sequence. Thanks to the advancements in modern field networking technology, interference due to noise from other networks has been minimized to the point of being a rare concern. Even with the rarity, fail-safes are included in WirelessHART™.

All security functions are handled by the network autonomously, meaning manual configuration is unnecessary. In addition to process control environments, power plants will typically use two simultaneous wireless networks. Transmitters allow both safety showers and eyewash stations to trigger an alarm at the point of control when activated. Thanks to reduced cost, and their ease of applicability in environments challenging to wired systems, along with their developed performance and security, wireless industrial connectivity will continue to expand.

Share your connectivity challenges with process measurement specialists, leveraging your own process knowledge and experience with their product application expertise.

Tuesday, August 15, 2017

Calibration Standards

process instrument field calibrator
Field calibration instruments
Image courtesy of Yokogawa
Calibration is an essential part of keeping process measurement instrumentation delivering reliable and actionable information. All instruments utilized in process control are dependent on variables which translate from input to output. Calibration ensures the instrument is properly detecting and processing the input so that the output accurately represents a process condition. Typically, calibration involves the technician simulating an environmental condition and applying it to the measurement instrument. An input with a known quantity is introduced to the instrument, at which point the technician observes how the instrument responds, comparing instrument output to the known input signal.

Even if instruments are designed to withstand harsh physical conditions and last for long periods of time, routine calibration as defined by manufacturer, industry, and operator standards is necessary to periodically validate measurement performance. Information provided by measurement instruments is used for process control and decision making, so a difference between an instrument’s output signal and the actual process condition can impact process output or facility overall performance and safety.

In all cases, the operation of a measurement instrument should be referenced, or traceable, to a universally recognized and verified measurement standard. Maintaining the reference path between a field instrument and a recognized physical standard requires careful attention to detail and uncompromising adherence to procedure.

Instrument ranging is where a certain range of simulated input conditions are applied to an instrument and verifying that the relationship between input and output stays within a specified tolerance across the entire range of input values. Calibration and ranging differ in that calibration focuses more on whether or not the instrument is sensing the input variable accurately, whereas ranging focuses more on the instrument’s input and output. The difference is important to note because re-ranging and re-calibration are distinct procedures.

In order to calibrate an instrument correctly, a reference point is necessary. In some cases, the reference point can be produced by a portable instrument, allowing in-place calibration of a transmitter or sensor. In other cases, precisely manufactured or engineered standards exist that can be used for bench calibration. Documentation of each operation, verifying that proper procedure was followed and calibration values recorded, should be maintained on file for inspection.

As measurement instruments age, they are more susceptible to declination in stability. Any time maintenance is performed, calibration should be a required step since the calibration parameters are sourced from pre-set calibration data which allows for all the instruments in a system to function as a process control unit.

Typical calibration timetables vary depending on specifics related to equipment and use. Generally, calibration is performed at predetermined time intervals, with notable changes in instrument performance also being a reliable indicator for when an instrument may need a tune-up. A typical type of recalibration regarding the use of analog and smart instruments is the zero and span adjustment, where the zero and span values define the instrument’s specific range. Accuracy at specific input value points may also be included, if deemed significant.

The management of calibration and maintenance operations for process measurement instrumentation is a significant factor in facility and process operation. It can be performed with properly trained and equipped in-house personnel, or with the engagement of subcontractors. Calibration operations can be a significant cost center, with benefits accruing from increases in efficiency gained through the use of better calibration instrumentation that reduces task time.